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Analysis of Cylindrical Transmission
Lines with the Method of Lines

Shujun Xiao, Riidiger Vahldieck, Senior Member, IEEE, and Jan Hesselbarth

Abstract— Cylindrical transmission lines are important for
a variety of applications. To calculate their propagation char-
acteristics, the method of lines in cylindrical coordinates has
been adopted. By discretizing the angular space direction with
radial lines, the two-dimensional (2-D) Helmholtz equation re-
duces to a set of ordinary one-dimensional (1-D) differential
equations, which can be solved analytically in radial direction
after an orthogonal transformation. To improve the accuracy of
the cylindrical method of lines from second-order to fourth-order,
neighboring lines are used to eliminate second-order discretiza-
tion errors not only in the Helmholtz equation but also in the
continuity equation and in the edge condition. The method is
suitable for the analysis of asymmetric cylindrical homogeneous
and inhomogeneous guided wave structures,

1. INTRODUCTION

YLINDRICAL multiconductor transmission lines on soft

substrate are of interest for a variety of applications,
in particular for new types of antennas and their feed lines
in mobile communication. The design of passive circuits on
curved surfaces is not a simple problem and is difficult with
most existing numerical approaches, especially when there
is no angular symmetry. Several papers on this topic have
been published so far. Most of them, however, are based on
conformal mapping techniques (i.e., [1]-[4]) and are limited in
their investigation to the fundamental quasi-TEM mode only.
An exception are papers [5], [6] where higher order modes
have also been analyzed.

In this paper we present a fullwave analysis of homoge-
neously filled cylindrical waveguides as well as planar trans-
mission lines on a cylindrical dielectric body using the method
of lines (MoL) in cylindrical coordinates. The advantages of
the MoL (no relative convergence, semianalytical approach
to solve the Helmholtz equation) have so far mostly been
exploited for structures that fit into a rectangular coordinate
system (i.e., [7], [8]). From that work the MoL is well known
as a numerically efficient and versatile analysis method. Only
little work has been done up to now to adopt this method also
for cylindrical structures. In [9] the MoL based on Cartesian
coordinates was utilized to analyze cylindrical structures. This
led to a staircase approximation of the cylindrical metallic
boundary, and in this case the method does not provide much
of an advantage over other space discretization methods that
use a rectangular or triangular mesh structure. To overcome
this problem, Thorburn, Agostron, and Tripathi [10], [11]
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discretized the r-variables in the Helmholtz equation with
circular lines and successfully solved the remaining equations
along the §-direction. However, they did not elaborate on how
to solve the problem at » = 0 (center of the coordinate system)
for the general case, that is, when no electric or magnetic walls
can be assumed. This problem is avoided in [12], in which
it is suggested to discretize the -variable instead of the r-
variable by using radial straight lines. However, only angular
symmetrical structures were tested, which is a special case. It
was found that in this case the difference operator [P], the
eigenvalues [A], and the transformation matrix [T'] found for
Cartesian coordinates (to diagonalize the Helmholtz equation)
can also be applied to cylindrical coordinates. For asymmetric
cylindrical structures this is not true since magnetic and
electric walls can not be defined and the difference operator
[P] as well as the transformation matrix [1'] are different from
[12], but identical to the ones developed for periodic structures
in Cartesian coordinates [8].

If a waveguide structure is subdivided into homogeneous
subregions, the continuity condition of fields between sub-
regions must also be satisfied. For asymmetrical cylindrical
structures this procedure has been described briefly in [16]. In
the following we will address this problem in more detail in the
context of numerical accuracy. It is well known that the MoL
provides only second-order accuracy. To obtain fourth-order
accuracy three neighboring lines must be utilized to eliminate
analytically the second-order error. This was first shown in
[7] for Cartesian coordinates, but in that work the fourth-order
scheme was only applied to the discretization of the Helmholtz
equation and no overall improvement of the MoL accuracy
was achieved.

In [15] it was then demonstrated for the first time that in
order to improve the overall accuracy of the Cartesian MoL
the fourth-order scheme must also be applied to the continuity
condition and the edge condition. In [16] the fourth-order
scheme was then implemented also into the cylindrical MoL.
Another higher order scheme was published recently [17], but
only negligible improvement over the fourth-order scheme was
demonstrated.

To further improve the computational efficiency of the cylin- .
drical MoL the singular value decomposition (SVD) technique
is utilized to find the zeros of the system determinant. The
efficiency of the MoL algorithm in general ig suffering from
the fact that the system determinate contains poles and zeros
and that they can be located in close proximity. Any root
finding algorithm must distinguish between a zero and a pole.
This is not only time consuming but can also lead to errors
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Fig. 1. (a) Discretization scheme for the CMoL in a multiconductor and
multilayer cylindrical transmission line. (b) Circular ridge waveguide structure
as an example for a cross-section with finite metallization thickness.

in that one or more zeros may not be found. Using an SVD
algorithm eliminates this problem, as was shown in [13].

To test the cylindrical MoL (CMoL.) algorithm, a variety of
cylindrical cross sections have been calculated. Comparisons
with numerical data from other methods shows generally good
agreement and confirms the efficiency of this approach.

II. SEMIANALYTICAL SOLUTION OF HELMHOLZ EQUATION

The principal steps in developing the MoL algorithm are
always th same, whether Cartesian or cylindrical coordinates
are involved. Therefore, the following mathematical steps are
greatly abbreviated and focus only on the aspects pertaining
to the MoL in cylindrical coordinates. To outline the CMoL
procedure the following discussion concentrates on planar
transmission lines on curved multilayered diclectric substrate
enclosed in a metallic cylindrical waveguide. The extension of
the CMoL to radially open structures is straightforward.

The electromagnetic fields in each uniform region can
be derived from two independent scalar potential functions
¢ exp {jwl —yz}. Both are directly proportional to the field
components I, and H, and satisfy the Helmholtz equation in
polar coordinates

19 (0 9?

(1) W= =0
as well as the boundary conditions depending on the structure
(k? = w?pue).

The cross section of Fig. 1(a) is discretized in the #-direction
by using N radial lines

27k
with h being the angular spacing between the lines. The
discretization lines for the electric potential function ¢, are
shifted with respect to ¢y, (the magnetic potential function) by
half a discretization step, h/2. The first-order finite difference

equation can then be written in matrix form as

T

h’ 89 [D]¢Ea 39’ = _[D]t¢h

3)

with h=27/N. Vectors ¢, 5 denote d=[d1 ¢ d3.- -, dN]|".
The first-order finite difference operator [D] is an N x N
bidiagonal matrix identical to the one developed for periodic
structures in [8], but different from the one used in [12] for
symumetrical structures in that the lower left corner element of
[D] is 1 instead of zero. Using the central finite difference
scheme again, the second-order partial differential operator
yields

9%
2 el _
"o,

2 —1 0 0 0 -1
-1 2 -1 0 0 0

[P] = N )
0 0 0 -1 2 -1
-1 0 0 0 -1 2

Due to the angular periodicity, [P] contains a —1 element
in the lower left and upper right corners, which again is not
the case for symmetrical structures [12]. Introducing [P] into
the Helmholtz equation, a set of coupled ordinary differential
equations is obtained

d [ do - [P
" (’I”if*) + kZr?p — [h]2¢ =5

__ h? 0%

h* o' h4 86(5
T 12 90%

nm o9 6
+ 360 546 +o(h®)

(6)
where k2 = k?— /3% and  is an error term. In order to decouple
(6), [P] must be diagonalized by an orthogonal matrix [T]
such that [A] = [T]*[P]{T] with [T]* = [T]~* = [T], where
[A] is a diagonal matrix of the eigenvalues of [P)]. This can be
achieved either with the complex transformation of [8], found
for periodic structures, or with the following matrix:

Ti; = (cosay; +sin Oéi]')/\/N, Ae =2(1 —cosay) (7)

where Ay are the eigenvalues of [P] and «;; = h -1 -7,
h=2n/N,ap = h-k (i,j,k =1,2,--- N). Applying
this transform to (6) and substituting u; = Ag/h°, the

set of Helmbholtz equations is now decoupled into a set of
independent ordinary differential equations

d [ dey o 1 o _ 2sin (0 /2)
rdr (7“ dr ) + (l“c 2 Pk =7, e = ———F——

h
(3)
where ¢ (K = 1,2,3,---,N) is called the transformed
potential function and ¢ = [p1, @2, -+, ¢n]| = [T]¢. In every
uniform region, the general solution to the Bessel equation (8)
are Bessel functions of uy; order

or = AY D (ker) + B YD (ker) )
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where Y,f,cl 2) is cither one of the following functions:

Y(l)(kcr) ~ Ju, (ker), I, (ker), Hﬁl)(kcr),

Hk k

YD (ker) ~ Ny (ker), Ky, (ker), HD (ker).

Ju, and N, are, respectively, the Bessel functions of first
and second kind. I, and K, are the modified Bessel
functions of the first and second kind, and H, ,(Li) and Hgi)
are Hankel functions. These functions are selected according
to the individual applications. For example, it should be noted
that at r = 0 (the origin), N,, and K, will be singular
(approaching infinity). Therefore, for a problem including the
region r = 0, these functions must be excluded. Similarly, for
a region extended to infinity, the modified Bessel function of
the first kind is excluded. For closed structures the telegraphist
equation in polar coordinates is obtained as follows;

| P8 | = b (o), M)

e

ke
(e (hera)y Ny (kere))] ™ [ fiiék(ﬁl)] (10)
k. dr

where

sl = [ 3

The prime denotes a derivative with respect to . Equation (10)
links the transformed potential as well as its derivatives at the
outer and inner boundaries of a homogeneous subregion. To
link the fields between homogeneous subregions, the tangential
field continuity condition must be applied.

III. FIELD CONTINUITY CONDITION

For example, the continuity condition for Fy after the
discretization yields

i[p](ﬁ - ﬁ) :rh<% - @)

Wep €0  EnIT dr dr

1)

And similarily for the other field components. Multiplying
[T and [T] from the left and right sides, respectively, the
above equatior is diagonalized and yields one equation per line
for the transformed potential . Relating these potentials to the
conductor interface by using (10) and introducing the boundary
conditions of tangential electric fields along the conductor
surface, the relationship between the tangential fields E,, Fy
and the surface current intensities J,, Jy at the interface can
be obtained. Subsequently, all transformed potential functions
and discretized tangential fields can be transformed back to
the original domain to yield

(BTN = TIABYER a2
where the superscripts I and I7 denote the fields at the
interface between adjacent regions. Using the condition of zero

tangential electric fields on metallic strips and zero current
distribution in the slots, matrix equation (12) is reduced to
(Z]cea [ B 10t Ed stot 2 strip T 3

¢
z,slot z,strip 9,strip] =0. (]B)
For nontrivial solutions the zeros of det {[Z];eqa} = 0 must

be found.

IV. IMPROVED ACCURACY OF THE CYLINDRICAL MoL

In the previous paragraph we have outlined the basic MoL
procedure in cylindrical coordinates. Obviously, the principle
procedure is the same as in Cartesian coordinates except that
all functions and variables are expressed in cylindrical coor-
dinates. In the following we will show how the discretization
error can be reduced to fourth-order by utilizing three neigh-
boring lines in the discretization of the cylindrical Helmholtz
equation as well as the discretized continuity condition. This
was briefly described for the first time in [16].

As in any space discretization method the accuracy of
the MoL depends mainly on the size of the discretization
steps. Although a fine discretization improves the accuracy in
general, also the CPU-time and memory space requirements
increase. Alternatively, one can avoid small discretization
steps to some degree if one can reduce the remaining finite
difference error. The discretization error in the Mol is of
second-order. To reduce this error to fourth-order is possible
if three neighboring lines are included in the finite difference
operator instead of only two. By choosing appropriate coeffi-
cients, the second-order error can be eliminated and only the
fourth-order error remains. Since the MoL algorithm contains
essentially three sources of discretization error (Helmholtz
equation, continuity equation, and edge condition), the second-
order error cancellation scheme must be applied to all three
error sources in order to achieve an overall improvement in
accuracy.

A. Helmholtz Equation

Discretizing the Helmholtz equation by using three neigh-
boring lines yields

(14)

where [P] is the same as in (6), but a new matrix [()] occurs
which 1s tridiagonal

10 1 0o --- 0 0 1
1 10 1 --- 0 0 0
1
- 1
Q=g | )
0 0 o --- 1 10 1
1 0 o --- 0 1 10

The problem now is that (14) is a set of equations coupled not
only through [P] but also through [Q]. In order to solve (14)
analytically, we must diagonalize [P] and [Q] with the same

orthogonal matrix. Since [Q] = [I] — &[P] and [P] can be
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diagonalized by [T7]. it is found that matrix [@Q] can also be
diagonalized by [T such that

(Y1) = ding |1 - 35 (e

where Ay is given already in (7).

B. Field Continuity Equation

A Taylor series analysis at a specific line & reveals for the
first derivative of the potential ¢

U{j}k . i((/) (b h72(')3¢k h_L asgbk
00~ R\ ) T o0 e T To30 a6

The third-order derivative is approximated by the central
difference quotient

P 9 <f/5k1 = 2¢5 + ¢k+1>

—--. (17

065~ g B2 (18

which results in the following field continuity equation for Ej,
where the error of (h?)-order is cancelled and the remaining
error is therefore of fourth-order (h*)

17t 9Pph
2 x 4" x 51 98>

Now the continuity equation, for example for Fjy, yields

i{D](ﬂ — ﬁ) = [U}hr(ﬂ — @) (20)

¥ = + o(h®). (19)

Wey €r 1 € IT dr dr
where
22 1 0 0 0 1
1 22 1 0 0 0
1

Ul=23 21
vl 24 |- e 20

0 0 0 1 29 1

1 0 0O .« 0 1 99

Because of [U] = [I] — 35[P], the matrix [U] as well as [D]
can be diagonalized by [T|. Similar equations are obtained
from the other field continuity conditions.

The application of the above procedure to the edge condition
is straightforward. The above procedure is suitable only for
cylindrical structures with metal strips of negligible thickness.
To account for the finite metallization thickness, additional
subregions must be introduced with transformation matrices
[T] that are determined by the boundary conditions in those
regions. For Cartesian coordinates this procedure has been
described in [8]. The implementation of this procedure in
cylindrical coordinates has not been described before and will
be outlined briefly in the following for the analysis of the
structure shown in Fig. 1(b). This is a circular ridge waveguide
(CRW) with different ridge depths. The CRW is divided into
four subregions in which the discretized Helmholtz equation
must be diagonalized individually. The difference to the diago-
nalization procedure described above is that the transformation
matrices in regions la and IIIb of Fig. 1(b) depend now on
the boundary conditions of the side walls of both ridges. while
[T] in region II is only determined by the sidewalls of the
ridge with larger penetration depth. In region I, [T] is again

determined by the periodic boundary condition. Because of the
different transformation matrices, the matching of the fields at
the interfaces between the subregions must be performed in the
space domain [8]. This was not necessary for the cylindrical
microstrip structures with thin metal strip ([T} was the same in
all subregions). Transtorming the fields of the center section I
into the interface determined by radius RA leads to

{jwuokaz(RA)
wpoHg(RA)

_ kgj{h h_/I;‘IXhDEQ
—5B Dy Xy, e, kX, — (ﬁ) DX, D,

Es(RA)
’ jEz(RAJ

X, =T diag Tk RANY
e J,.(k RA)

(23)

X, =T -diag {M} LTt

T (ke RA)

The transformation matrices of the other subsections are simi-
lar, although more complex because of the different boundary
conditions for the £- and H-fields and the fact that cylindrical
functions of both the first and the second kind have to be taken
into account. In cases where k2 < 0. the Bessel functions .J
and N are replaced by the modified Bessel functions / and
K, respectively.

For a waveguide homogeneously filled with a dielectric,
only the cutoff frequencies of the modes need be calculated.
Then, for 3 = 0, the above matrix equation separates into two
uncoupled matrix equations of only one quarter of the original
size—one for TE modes and one for TM modes.

V. SVD AND EIGENVALUE SOLUTION PROCEDURE

The fourth-order scheme discussed above does not change
the principal composition of the system matrix [Z] in (13)
or (23). To find the nontrivial solutions of [Z] can be time
consuming since poles and zeros may be in close proximity
and are therefore difficult to distinguish. As shown in [13] for
the mode matching method, the singular value decomposition
(SVD) procedure may be used to eliminate this problem. To
do so, the system matrix [Z] is diagonalized by two unitary
matrices. [F] and [V] ([F|"[F] = [{] and [V]*[V] = [{],
where [I] is an identity matrix and the superscript i denotes
Hermitian conjugate) such that [F]"[Z][V] = [S]. [9] is the
resulting diagonal matrix whose elements are called singular
values of matrix [Z]. For simplicity we rewrite (13) as [Z]a =
b, or in its diagonalized form as [S]A = B, where A = [V]*a
and B = [F]"b. The lowest singular value approaching zero
will now be exactly equivalent to (13). The modal field and
current distribution can then be obtained from [F] and [V] at
the minima of the lowest Sg.,— > 0. In other words, the
eigenvalue search in the MoL algorithm is now equivalent to
finding all the local minimum points of the lowest singular
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lowest singular value (arb. units)
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Fig. 2. Evaluation of the lowest singular values of the eigenvalue matrix for
TM modes of a cylindrical waveguide. Sixty lines used in the discretization
of the waveguide cross-section.

values of [Z] along the frequency axis by using a one-
dimensional (1-D) line search method. Poles are thus avoided
and present no problem for the search algorithm. This is shown
graphically in Fig. 2 for the cutoff frequencies of the TM
modes in a hollow circular waveguide. This simple structure
was chosen to compare the numerical results with analytical
solutions.

V1. NUMERICAL RESULTS

In order to test the cylindrical MoL algorithm with fourth-
order accuracy, a variety of structures have been investigated
and compared with other methods. First of all, Fig. 3(a)
illustrates the advantages of using the scheme with fourth-
order accuracy over the one with only second-order accuracy.
To reach the same accuracy of the fourth-order scheme, it is
apparent that the second-order scheme requires approximately
twice the number of lines.

In comparison with other methods, the cylindrical MoL is
generally in good agreement, as shown in Fig. 3(b) and (c)
for the propagation constant and the characteristic impedance,
respectively. Some discrepancies with quasistatic results, how-
ever, can be observed in Fig. 4. It appears as if the dispersion
is more pronounced in the microstrip line on curved than on
plane substrate, which would explain the deviations from [3] in
which a conformal mapping technique was used. For a bilateral
finline structure shielded by a circular waveguide housing (Fig.
5), results are compared with the finite element analysis [14]
and the Cartesian MoL [9]. As demonstrated in Fig. 5, also
here the agreement is very good for the fundamental and higher
order modes.

For circular ridge waveguides, results are shown in Figs.
6 and 7. Fig. 6 illustrates the convergence behavior of the
cutoff frequencies for the first 25 TM modes. It is evident
that with increasing mode number the number of lines must
increase to maintain a certain error level. To give an example
for the specific ridge constellation shown in Fig. 6, the TM21
modes are determined with only 30 lines to less than 0.2%
accuracy, while for the TMO03 mode 90 lines are required.

N

[4)]

»H

N

amplitude of relative errors (%)
w

-l

| 4% order

accuracy
o & s R A, e I — N . i A '
2 3 4 5 6 7 8 9 10
number of lines (N)
@
10— T

—— :CMolL
9F ooo :[5]and[6]

wh=15

I
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Quast-Static Value: 6.632
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effective dielectric constant
\‘

0 1 2 3 4 5 6 7
normalized frequency bKo
)

e
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[=3
[=]

o0co

characteristic impedance (Ohm)

o 1 2 3 4 5 6 7
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(c)

Fig. 3. Frequency-dependent properties of an open cylindrical microstrip
line. €,1 = 9.6, curve-linear coefficient R = a/b = 0.9. (a) Convergence
test, (b) e.g versus frequency, and (c) characteristic impedance versus
frequency. ’

Higher modes need a correspondingly higher number of lines.
Similar convergence behavior is observed for TE modes.
Fig. 7 shows the change in cutoff frequency for the first TE
modes when the penetration depths of both ridges increases.
Two effects can be observed: First, because of the asymmetric
structure, all of the orthogonally polarized TE modes separate,
and second, when mode crossing occurs the numerical results
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Fig. 4. Effective dielectric constant of an open multiconductor microstrip line
versus the separation angle . Dimensions of the different layers: d3/d; = 3,
dofd; =2, ¢r1 =2, 60 =4, 6,3 = 1, @ = 10.195°.
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Fig. 5. Dispersion characteristic of a bilateral finline in a circular waveguide

enclosure. Waveguide housing WC-33, ¢ = 4.165 mm, A = (0.254 mm,
w = 0.3 mm, ¢, = 2.2.
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Fig. 6. Convergence test for TM modes in a CRW.

from the SVD procedure indicate otherwise, as shown in the
inset. A fine resolution of the SVD resulis in the neighborhood
of the cross-over point suggests that there is no mode crossing.
However, plotting the fields of the modes a distance away

TE31

-+
s
L

TEO1

normatized frequency KcRo

w

TE21

n

TE11 —

. P o . o..FEM
RA/Ro = 0.90 0.80 0.70 0.60 0.50
RB/Ro = 0.95 0.90 0.85 0.80 0.75

Fig. 7. Cutoff frequencies of TE modes versus ridge penetration depths.

from the cross-point indicates clearly that the modes must
have crossed.

VII. CONCLUSION

The method of lines in cylindrical coordinates (CMol.) has
been described for angular asymmetric structures including
finite metallization thickness. The accuracy of the CMoL has
been improved from second-order to fourth-order in all three
sources of error, that is, the Helmholtz equation, the continuity
condition, and the edge condition. The method has been
tested for inhomogeneous (multilayered dielectric structures)
asymmetric transmission lines and homogeneous circular ridge
waveguides.
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